Surname	Other	names
Pearson Edexcel evel 1/Level 2 GCSE (9-1		Candidate Number
Mathema	tics	
Paper 3 (Calculator Solutions from)	Higher Tier
Paper 3 (Calculator	or, Belma	Higher Tier Paper Reference 1MA1/3H

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You must show all your working.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Information

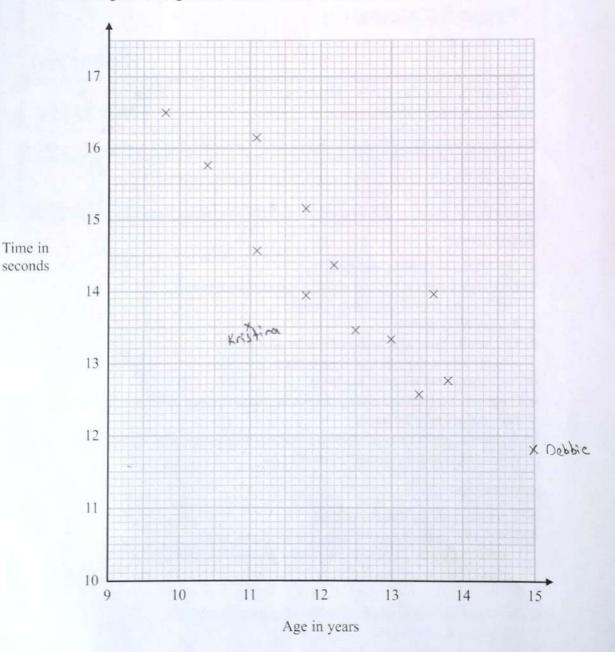
- The total mark for this paper is 80
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over

P48864A c2018 Pearson Education Ltd.


Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 The scatter diagram shows information about 12 girls.

It shows the age of each girl and the best time she takes to run 100 metres.

(a) Write down the type of correlation.

negatif

(1)

Kristina is 11 years old.

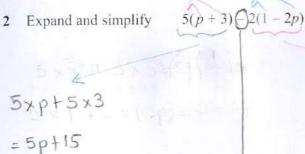
Her best time to run 100 metres is 12 seconds.

The point representing this information would be an outlier on the scatter diagram.

(b) Explain why.

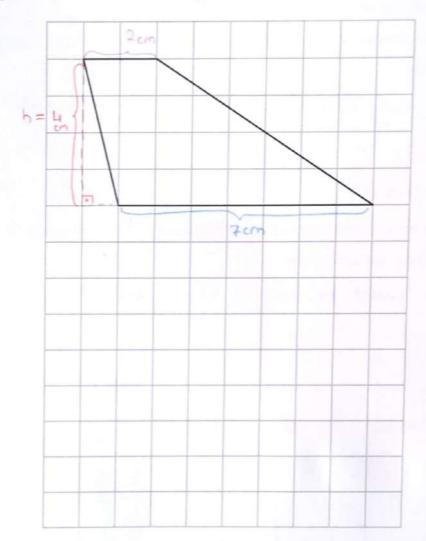
(1)

Debbie is 15 years old.


Debbie says,

"The scatter diagram shows I should take less than 12 seconds to run 100 metres."

(c) Comment on what Debbie says.


(1)

(Total for Question 1 is 3 marks)

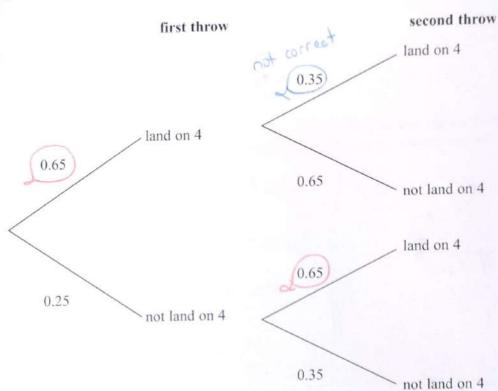
(Total for Question 2 is 2 marks)

3 Here is a trapezium drawn on a centimetre grid.

On the grid, draw a triangle equal in area to this trapezium.

Area of tropezium =
$$\frac{7+2}{2} \times 4$$

$$= \frac{9}{12} \times \frac{4}{1}$$

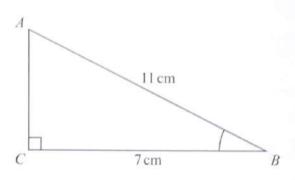

$$= 9 \times 2$$

$$= 18 \text{ cm}^2$$

(Total for Question 3 is 2 marks)

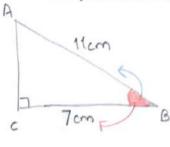
4 When a biased 6-sided dice is thrown once, the probability that it will land on 4 is 0.65.
The biased dice is thrown twice.

Amir draws this probability tree diagram. The diagram is **not** correct.


Write down two things that are wrong with the probability tree diagram.

1 probabilities should total 1 but first line 0.65+0.25 \$1

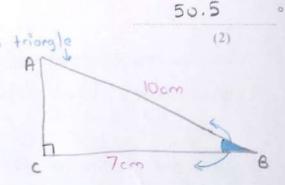
2 for second throw, the probability it lands on 4 should be


(Total for Question 4 is 2 marks)

5 ABC is a right-angled triangle.

(a) Work out the size of angle ABC.

Give your answer correct to 1 decimal place.


$$\cos ABC = \frac{7}{11} = 0.636363...$$

(which angle's cos is equal to 0.6363...?)

The length of the side AB is reduced by 1 cm.

The length of the side BC is still 7 cm. Angle ACB is still 90°

(b) Will the value of cos ABC increase or decrease? You must give a reason for your answer.

$$\cos ABC = \frac{7}{10}$$
 increase, $\frac{7}{10}$ is greater than $\frac{7}{11}$

(Total for Question 5 is 3 marks)

(1)

6 There are some counters in a bag.

The counters are red or white or blue or yellow.

Bob is going to take at random a counter from the bag.

The table shows each of the probabilities that the counter will be blue or will be yellow.

Colour	red	white	blue	yellow
Probability			0.45	0.25

There are 18 blue counters in the bag.

The probability that the counter Bob takes will be red is twice the probability that the counter will be white. $2 \times$

(a) Work out the number of red counters in the bag.

colour	red	white	blue	yellow	
probability	2×P=02	P-0.1	0.45	0.25	
umper of			18		

total number
of counters

$$X \times 0.45 = 18$$
 $X \times \frac{65}{100} = 18$
 $X = \frac{13 \times 100}{45}$

X = 40 -

A marble is going to be taken at random from a box of marbles. The probability that the marble will be silver is 0.5

There must be an even number of marbles in the box.

(b) Explain why.

0.5 multiplied by an add number will rever be a whole number,
for helf of a number to be on integer that number must be even you can't
have helf a merble

(1)

(Total for Question 6 is 5 marks)

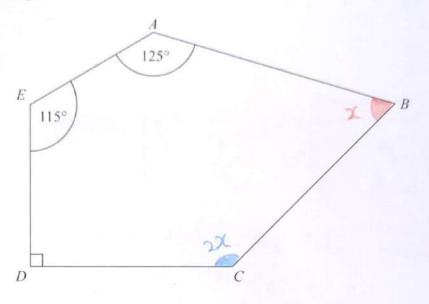
(4)

7 Solve
$$\frac{5-x}{2} \xrightarrow{2x-7} \frac{2x-7}{1}$$

$$1 \times (5-x) = 2 \times (2x-7)$$

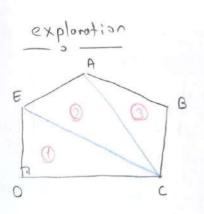
$$1 \times 5 - 1 \times x = 2 \times 2x - 2 \times 7$$

$$5 - x = 4x - 14$$


$$5 + 14 = 4x + x$$

$$19 = 5x$$

$$5 = x \Rightarrow x = 3.8$$


(Total for Question 7 is 3 marks)

8 ABCDE is a pentagon.

Angle $BCD = 2 \times \text{angle } ABC$

Work out the size of angle *BCD*. You must show all your working.

$$540 = 90 + 2x + x + 12S + 115$$

$$540 = 3x + 330$$

$$540 - 330 = 3x$$

140

(Total for Question 8 is 5 marks)

$$9 \quad T = \sqrt{\frac{w}{d^3}}$$

$$w = 5.6 \times 10^{-5}$$
$$d = 1.4 \times 10^{-4}$$

(a) Work out the value of T.

Give your answer in standard form correct to 3 significant figure

$$T = \int \frac{5.6 \times 10^{-5}}{(1.6 \times 10^{-4})^3} = \int \frac{5.6 \times 10^{-5}}{1.6^3 \times 10^{-12}} = \int \frac{5.6}{1.6^3} \times 10^7 = \int \frac{5.6}{1.6^3} \times 10^7$$

$$T = \frac{4.52 \times 10^3}{(2)}$$

w is increased by 10% d is increased by 5%

Lottie says,

"The value of T will increase because both w and d are increased."

$$T = \sqrt{\frac{5.6 \times 10^{-5} \times 1.1}{(1.6 \times 10^{-4} \times 1.05)^3}}$$

exploration
$$= \frac{1}{5.6 \times 1.1 \times 10^{-5} + 12}$$
will increased by 10% = $\frac{110}{100}$ = 1.1
$$= \frac{5.6 \times 1.1 \times 10^{-5} + 12}{1.6^3 \times 1.05^3} = 4.40... \times 10$$

(2)

(Total for Question 9 is 4 marks)

10 Here are three lamps.

lamp A

lamp C

Lamp A flashes every 20 seconds.

Lamp B flashes every 45 seconds.

Lamp C flashes every 120 seconds.

The three lamps start flashing at the same time.

How many times in one hour will the three lamps flash at the same time?

one hour = 60 minutes = 3600 seconds

3600 - 360 = 10 times

10

(Total for Question 10 is 3 marks)

11 In 2003, Jerry bought a house.

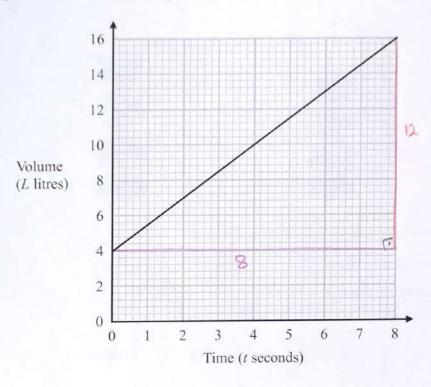
In 2007, Jerry sold the house to Mia. He made a profit of 20%
$$= \frac{120}{100} = 1.26$$

In 2007, Jerry sold the house to Mia.

He made a profit of 20%

In 2012, Mia sold the house for £162 000

She made a loss of 10%


$$\Rightarrow \qquad \text{loss} \qquad \text{logs} = \frac{120}{100} = 1.20$$

Work out how much Jerry paid for the house in 2003

£ 150000

(Total for Question 11 is 3 marks)

12 The graph shows the volume of liquid (L litres) in a container at time t seconds.

(a) Find the gradient of the graph.

gradient =
$$\frac{12}{8}$$
 = 1.5

1.5

(b) Explain what this gradient represents.

rate of which the container fills or change in number of litres
per second
(1)

The graph intersects the volume axis at L = 4

(c) Explain what this intercept represents.

volume (omount) of liquid in the container of the start

(1)

(Total for Question 12 is 4 marks)

13 Here are two similar solid shapes.

A

B

surface area of shape \mathbf{A} : surface area of shape $\mathbf{B} = 3:4$

The volume of shape B is 10 cm³

Work out the volume of shape **A**. Give your answer correct to 3 significant figures.

$$\frac{\text{oreo of } A}{\text{oreo of } B} = \frac{3}{4} = \frac{3}{2} \Rightarrow \text{scale of lengths}$$

6.50

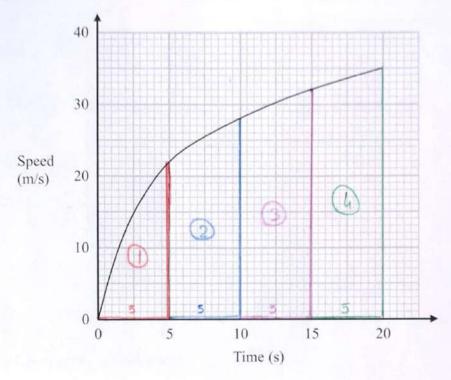
cm.

(Total for Question 13 is 3 marks)

14

14 There are 16 hockey teams in a league.

Each team played two matches against each of the other teams.


Work out the total number of matches played.

15th 11
$$\frac{1}{4}$$
15+14+13+12++1 = $\frac{15\times16}{2}$
= 120

240

(Total for Question 14 is 2 marks)

15 The graph shows the speed of a car, in metres per second, during the first 20 seconds of a journey.

(a) Work out an estimate for the distance the car travelled in the first 20 seconds. Use 4 strips of equal width.

$$\bigcirc \Rightarrow \frac{22 \times 5}{2} = 55$$

$$\bigcirc \Rightarrow \frac{22+28}{2} \times 5 = 25 \times 5 = 125$$

(3) =>
$$\frac{28+32}{2} \times 5 = 30 \times 5 = 150$$

497.5

metres

(3)

(b) Is your answer to part (a) an underestimate or an overestimate of the actual distance the car travelled in the first 20 seconds? Give a reason for your answer.

underestimate, all ports not included below the graph

(1)

(Total for Question 15 is 4 marks)

16 The *n*th term of a sequence is given by $an^2 + bn$ where a and b are integers.

(a) Find the 6th term of the sequence.

$$0 = 2$$
 => $0 \times 2^2 + b \times 2 = -2$ => $4a + 2b = -2$ => $6a + 2b = -2$ => $a \times 4^2 + b \times 4 = 12$ => $16a + 4b = 12$

Here are the first five terms of a different quadratic sequence.

- 0 2 6 12 20
- (b) Find an expression, in terms of n, for the nth term of this sequence.

$$0 \qquad 2 \qquad 6 \qquad 12 \qquad 20$$

$$10^{2} + b \cdot n + c$$

$$10^{2} + b \cdot n + c = 0$$

$$1 + 2 \qquad + 2 \qquad 1 + b \cdot 1 + c = 0$$

$$1 + 3 + c = 0 \qquad b + c = -2$$

$$1 + 3 + c = 0 \qquad b + c = -2$$

$$1 + 3 + c = 0 \qquad b + c = -2$$

$$1 + 2b + c = 0 \qquad b + c = -2$$

$$1 + 2b + c = 0 \qquad b + c = -2$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

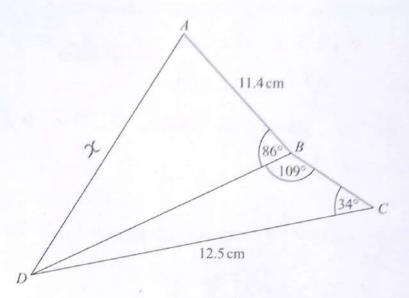
$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$


$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

$$1 + 2b + c = 0 \qquad c = 0$$

(Total for Question 16 is 6 marks)

17

Work out the length of AD. Give your answer correct to 3 significant figures.

$$sin + heorem = \frac{DC}{sin 109} + \frac{BO}{sin 34}$$
 (os + heorem =)
 $AO^2 = AB^2 + BO^2 - 2 \cdot AB \cdot BO \cdot \cos 96^\circ$

$$\Rightarrow BD = \frac{\sin 34^{\circ} \times DC}{\sin 109^{\circ}}$$

$$\Rightarrow C^{2} = 11.4^{2} + 7.39^{2} - 2 \times 11.4 \times 7.39 \times \cos 36$$

$$\Rightarrow C^{2} = 172.82$$

$$\Rightarrow 60 = \frac{\sin 34^{\circ} \times 12.5}{\sin 109^{\circ}}$$

$$\chi^2 = 172.82$$

13.1

(Total for Question 17 is 5 marks)

b

18 (a) Show that the equation $x^3 + x = 7$ has a solution between 1 and 2

for
$$x=1 \implies x^3 + x = 1^3 + 1 = 2$$

for $x=2 \implies x^3 + x = 2^3 + 2 = 10$

2 and 10 fore above and Ibelow 7. Thus implying a solution

(2)

(b) Show that the equation $x^3 + x = 7$ can be rearranged to give $x = \sqrt[3]{7 - x}$

$$x^{3} + x = 7$$

$$\sqrt[3]{x^{3}} = \sqrt[3]{7} - x \implies x = \sqrt[3]{7} - x$$

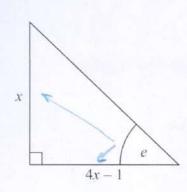
(1)

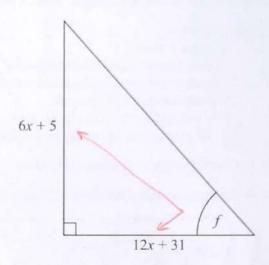
(c) Starting with $x_0 = 2$, use the iteration formula $x_{n+1} = \sqrt[3]{7 - x_n}$ three times to find an estimate for a solution of $x^3 + x = 7$

$$\chi_{0} = \sqrt[3]{7 - \chi_{0}}$$

$$\chi_{0} = 2 \Rightarrow \chi_{0} = \sqrt[3]{7 - \chi_{0}} = \chi_{1} = \sqrt[3]{7 - 2} = \sqrt[3]{5} = 1.7099759...$$

$$\chi_{1} = 1.7099 \Rightarrow \chi_{1} = \sqrt[3]{7 - \chi_{1}} = \chi_{2} = \sqrt[3]{7 - 1.7099} = 1.742427...$$


$$\chi_{1} = 1.7424... \Rightarrow \chi = 3\sqrt{1 - 1.7424...} = 1.73885...$$


1.74

(3)

(Total for Question 18 is 6 marks)

19 Here are two right-angled triangles.

Given that

$$\tan e = \tan f$$

find the value of x.

You must show all your working.

$$tone = \frac{x}{4x-1}$$

$$ton f = \frac{6245}{122431}$$

ton
$$e = \frac{x}{4x-1}$$
 $\frac{3c}{4x-1} \neq \frac{6x+5}{12x+31}$
 $\frac{3c}{4x-1} \neq \frac{6x+5}{12x+31}$

$$2(x)2x + 2(x)3 = 6x \times 6x + 6x \times 5 - 6x - 5$$

$$12x^{2} + 31x = 26x^{2} + 20x - 6x - 5$$

$$12x^{2} + 31x = 26x^{2} + 16x - 5$$

$$0 = 26x^{2} + 16x - 5 - 12x^{2} - 31x$$

$$0 = 12 x^{2} - 17 x - 5$$

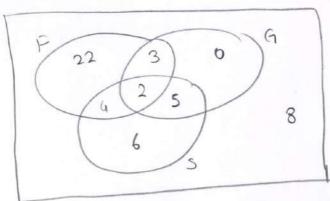
$$4 x + 1$$

$$-5$$

$$0 = (\alpha x + 1)(3x - 5)$$

$$x = \frac{1}{4}$$
 $x = \frac{5}{3}$

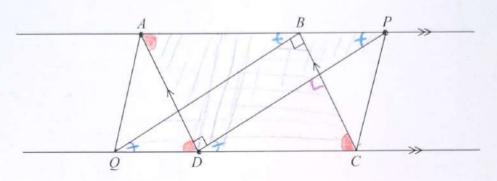
(Total for Question 19 is 5 marks)


20 50 people were asked if they speak French or German or Spanish.

Of these people,

- 31 speak French
- 2 speak French, German and Spanish
- 4 speak French and Spanish but not German
- 7 speak German and Spanish
- 8 do not speak any of the languages
- all 10 people who speak German speak at least one other language

Two of the 50 people are chosen at random.


Work out the probability that they both only speak Spanish.

$$\frac{6}{50} \times \frac{5}{49} = \frac{6}{490}$$

(Total for Question 20 is 5 marks)

21

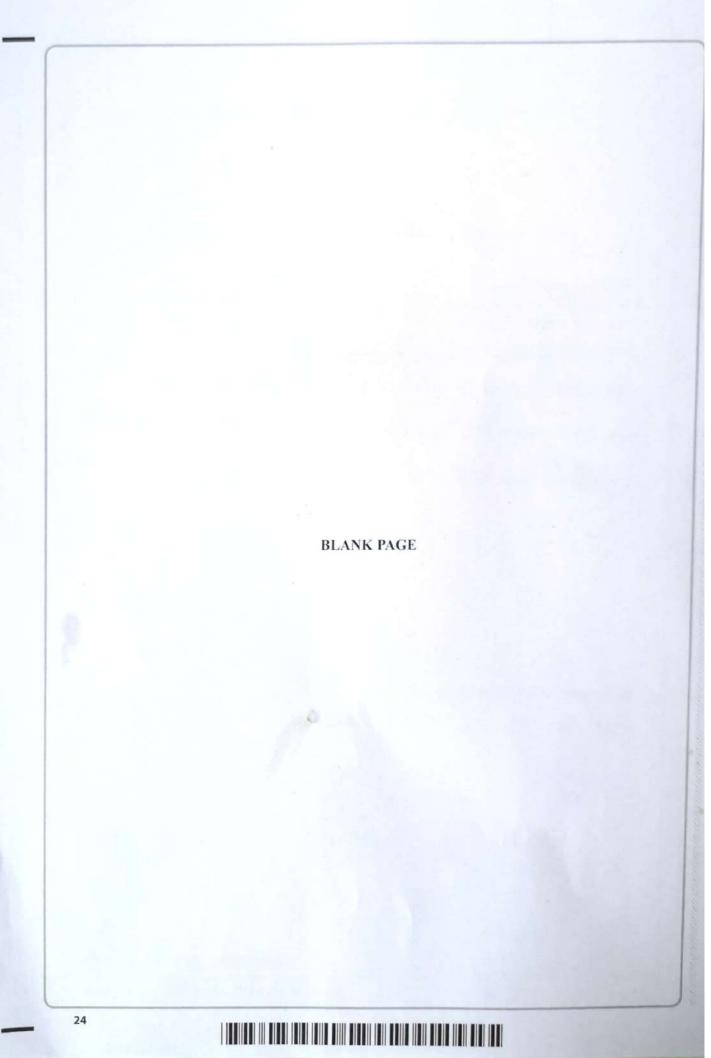
ABCD is a parallelogram.

ABP and QDC are straight lines.

- Angle ADP = angle CBQ = 90°
- (a) Prove that triangle ADP is congruent to triangle CBQ.

AD = BC (opposite sides of a porellelogram are equal)

angle BAO = ongle BCO (apposite angles of a parellelogram are equal)


orgle ADP = orgle CB9 = 90°

(b) Explain why AQ is parallel to PC.

(2)

(Total for Question 21 is 5 marks)

TOTAL FOR PAPER IS 80 MARKS

