		1MA1 Practice pa	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
1.	(a)		76	3	M1 for 89% = 68 M1 for 68 ÷ 0.89 (or equivalent) A1 for 76 – 76.41
	(b)		11.8	2	M1 for (68 – 60) ÷ 68 × 100 (or equivalent) A1 for 11.7 – 12
2.		12 are red. $\frac{1}{3} \text{ are red}$ $12 \times 3 =$ 2 blue for 1 red $24 \text{ blue for } 12 \text{ red}$ $24 + 12 =$	36	3	M1 for P(red) = $\frac{1}{3}$ M1 for $\frac{1}{3} \times 36 = 12 \text{ red}$ or 12×3 A1 for 36 cao OR M1 for 2 blue for 1 red M1 for 24 blue for 12 red or 24 + 12 A1 for 36 cao

		1MA1 Practice pa	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
3.			No with reason	1	C1 No and e.g, the area of B will be $2^2 = 4$ times greater than the area of A or may use values to give a counter example
4.		$\frac{15}{2} - \frac{14}{3} = \frac{45a}{6a} - \frac{28a}{6a}$	shown	3	M1 Complete improper fractions M1 Correct fractions with common denominator a multiple of 6
					A1 dep on M2. Improper fraction required, e.g. $\frac{17}{6}$, $\frac{34}{12}$
5.				3	M1 expands bracket, e.g., $5t - 5g = 2t + 7$ or divides all terms by 5 as a first step M1 isolates terms in t , e.g., $5t - 2t = 7 + 5g$
			$t = \frac{7 + 5g}{3}$		A1

		1MA1 Practice pa	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
Que 6.	stion	Working $180 \times 365 = 65700$ $65700 \div 1000 = 65.7$ $65.7 \times 91.22 = 5993.154$ $5993.154 \div 100 + 28.20 = 88.13$	•	`	Notes Per year M1 for 180 × '365' (= 65700) M1 for '65700' ÷ 1000 (= 65.7 or 65 or 66) M1 for '65.7' × 91.22 (= 5993) A1 for answer in range (£)87 to (£)89 C1 (dep on at least M1) for conclusion following from working seen OR (per day) M1 for 107 ÷ '365' (= 0.293) M1 for 180 ÷ 1000 × 91.22 (= 16.4196)
		D U C T 366 65880 6010 88.30 365 65700 5993 88.13 65000 5929 87.49 66000 6020 88.40 364 65520 5976 87.96 360 64800 5911 87.31 336 60480 5517 83.37			M1 for 28.2 ÷ '365' + '0.164196' (units must be consistent) A1 for 29 – 30(p) and 24 – 24.3(p) (or equivalent) C1 (dep on at least M1) for conclusion following from working seen OR
					M1 for (107 – 28.20) ÷ 0.9122 (= 86.384) M1 for '86.384'× 1000 (= 86384.5) M1 for '365' × 180 (= 65700) A1 for 65700 and 86384.5 C1 (dep on at least M1) for conclusion following from working seen NB: Allow 365 or 366 or 52×7 (=364) or 12 × 30 (=360) or 365½ for number of days

		1MA1 Practice pa	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Que	estion	Working	Answer	Mark	Notes
7.		36 × 4 (=144)	No with correct working	4	M1 for 36 × 4 (= 144)
		176 + 103 + '144' (= 423)	5		M1 for 176 + 103 + '144' (= 423)
		$15 \times 28 = 420$			M1 for 28 × 15
		Or			C1 (dep on at least M2 awarded) for 420 and 423 and 'No she won't have enough'
		'423' ÷ 28 = 15.107			Or
					M1 for 36 × 4 (=144)
					M1 for 176 + 103 + '144' (=423)
					M1 for 423 ÷ 28
					C1 (dep on at least M2 awarded) for 15.10 or 15.11 or 15.107 and 'No she won't have enough'
8.	(a)		7 <i>n</i> – 4	2	B2 for 7 <i>n</i> – 4
					(B1 for $7n + d$ where d is an integer)
	(b)		explanation	2	M1 for ' $7n - 4$ ' = 150 or any other valid method, e.g. counting on 7s (to get 150)
					A1 for a complete explanation eg. the 22nd term is 150 or $n = 22$ from solution of equation or a clear demonstration based on 22 or complete sequence

		1MA1 Practice pap	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Que	estion	Working	Answer	Mark	Notes
9.	(a)	9	6	3	M1 13 or 12.75 (LQ) 19 or 18.25 (UQ) identified from ordered list OR attempt to find IQR eg. 3(rd) and 9(th) seen or 2.75(th) and 8.25(th) seen M1 Identify 13 or 12.75 (LQ), AND 19 or 18.25 (UQ) A1 (accept 5.5)
	(b)		James and reason using IQR	1	B1 ft from (a) James: he has a lower IQR (or equivalent) (IQR must be part of the statement)
	(c)		no change with reason	1	B1 no change box ticked with reason, e.g. 2 new scores above median and 2 new scores below median or median of 4 numbers is 17

	1MA1 Practice pa	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Question		Answer	Mark	Notes
10. (a	$\frac{1}{2}(3x+1+5x+3)(2x+3) = \frac{1}{2}(8x+4)(2x+3)$ So, $(4x+2)(2x+3)-46=0$ $8x^2+16x+6-46=0$ $8x^2+16x-40=0$ $x^2+2x-5=0$	Proof	3	M1 (dep) for expanding all brackets to get a correct expression for the area C1 for complete correct proof
(b)	$x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-5)}}{2 \times 1}$ $= \frac{-2 \pm \sqrt{24}}{2}$ OR $(x+1)^2 - 1^2 - 5$ $= (x+1)^2 - 6$ $x+1 = \pm \sqrt{6}$	1.45, -3.45	3	M1 for $\frac{-2 \pm \sqrt{2^2 - 4(1)(-5)}}{2 \times 1}$ condone one sign error in substitution M1 for $\frac{-2 \pm \sqrt{24}}{2}$ A1 for 1.44 to 1.45 (and -3.44 to -3.45) OR M1 for $(x + 1)^2 - 1^2 - 5$ (or equivalent) M1 for $x + 1 = (\pm)\sqrt{6}$ A1 for 1.44 to 1.45 (and -3.44 to -3.45)

	1MA1 Practice pa	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Question	Working	Answer	Mark	Notes
11.	$\sqrt{45^2 + 20^2} = \sqrt{2425} = 49.24$ $\sqrt{30^2 + 20^2} = \sqrt{1300} = 36.05$ $\sqrt{45^2 + 30^2} = \sqrt{2925} = 54.08$ $\sqrt{45^2 + 20^2 + 30^2} = \sqrt{3325}$ $= 57.66281297$ OR $30^2 + 20^2 + 45^2$ $= 900 + 400 + 2025 = 3325$ $\sqrt{3325'} = 57.66281297$	No with working	4	M1 for $45^2 + 20^2$ or $20^2 + 30^2$ or $45^2 + 30^2$ M1 for $\sqrt{45^2 + 20^2}$ or $\sqrt{20^2 + 30^2}$ or $\sqrt{45^2 + 30^2}$ M1 for $\sqrt{45^2 + 30^2}$ (= $\sqrt{3325}$) C1 for No AND $57.6 - 57.7 < 60$ (or equivalent) OR M2 for $30^2 + 20^2 + 45^2$ (= $900 + 400 + 2025 = 3325$) M1 for $\sqrt{3325}$ C1 for No AND $57.6 - 57.7 < 60$ (or equivalent)
12	$(6.21795 \cdot 10^{10}) \div 510072000$ $= 121.9(03378)$	$1.22\cdot 10^2$	3	M1 for SA Jupiter ÷ SA Earth e.g. $(6.21795 \cdot 10^{10}) \div 510\ 072\ 000$ (or equivalent), e.g. $62000 \div 51$ or digits 121 or digits 122 A1 for $121 - 122$ A1 for $1.21 \cdot 10^2 - 1.22 \cdot 10^2$

		1MA1 Practice pap	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
13.		9	Yes with appropriate reason	4	M1 for writing $l \propto \frac{1}{d^2}$ or $l = \frac{k}{d^2}$ M1 for substituting to find value of k ($k = 2500$) M1 for substituting 5.4 to get $l = \frac{2500}{5.4^2}$ or substituting 85 to get $85 = \frac{2500}{d^2}$ C1 (Dep on M1 for yes and the number of decibels is 85.7(3) which is more than 85 or distance is 5.42 m which is more than 5.4 m
14.		73 – 26	47	3	M1 for a complete method A1 B1 Alternate segment theorem
15.		$12 \times 20 + 10.8 \times 10 + 7 \times 15 + 5 \times 15 + 1.8 \times 30 + 0.6 \times 30$ $= 240 + 108 + 105 + 75 + 54 + 18$ $= 528 + 72 = 600$	12%	3	M1 for attempt to work out total area (e.g. = 600) or area greater than 60 (e.g. =72) by using fd or counting squares M1 (dep) for $\frac{'72'}{'600'} \times 100$ (or equivalent) (= 12) A1 cao (must have % otherwise 2 marks)

		1MA1 Practice pa	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
16.		$2^{\frac{n}{2}} = \frac{2^x}{(2^3)^y}$ $2^{\frac{n}{2}} = 2^{x-3y}$		3	M1 for writing 8 as 2^{3} or $2^{\frac{n}{2}}$ M1 for 2^{x-3y} or $\frac{1}{2}n = x - 3y$
			n = 2x - 6y		A1 for $n = 2(x - 3y)$ or $n = (x - 3y)$ 0.5
17.	(a)		b – a	1	B1 for $\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + \mathbf{b}$
	(b)	$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$ $\overrightarrow{AP} = \frac{3}{4} \times (\mathbf{b} - \mathbf{a})$ $\overrightarrow{OP} = \mathbf{a} + \frac{3}{4} \times (\mathbf{b} - \mathbf{a})$ OR $\overrightarrow{OP} = \overrightarrow{OB} + \overrightarrow{BP}$ $\overrightarrow{BP} = \frac{1}{4} \times (\mathbf{a} - \mathbf{b})$ $\overrightarrow{OP} = \mathbf{b} + \frac{1}{4} \times (\mathbf{a} - \mathbf{b})$	$\frac{1}{4}(\mathbf{a}+3\mathbf{b})$	3	B1 for $\frac{3}{4} \times \text{`}(\mathbf{b} - \mathbf{a})\text{'}$ M1 for $(\overrightarrow{OP} =) \overrightarrow{OA} + \overrightarrow{AP} \text{ or } (\overrightarrow{OP} =) \overrightarrow{OA} + \frac{3}{4} \overrightarrow{AB}$ or $\mathbf{a} \pm \frac{3}{4} \times \text{`}(\mathbf{b} - \mathbf{a})\text{'}$ A1 for $\frac{1}{4}(\mathbf{a} + 3\mathbf{b})$ or $\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$ OR B1 for $\frac{1}{4} \times \text{`}(\mathbf{a} - \mathbf{b})\text{'}$ M1 for $(\overrightarrow{OP} =) \overrightarrow{OB} + \overrightarrow{BP} \text{ or } (\overrightarrow{OP} =) \overrightarrow{OB} + \frac{1}{4} \overrightarrow{BA}$ or $\mathbf{b} \pm \frac{1}{4} \times \text{`}(\mathbf{a} - \mathbf{b})\text{'}$ A1 for $\frac{1}{4}(\mathbf{a} + 3\mathbf{b})$ or $\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$

	1MA1 Practice p	apers Set 2: Paper 31	H (Regular) mark scheme – Version 1.0
Question	Working	Answer	Mark	Notes
18.				

		1MA1 Practice pag	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Qu	estion	Working	Answer	Mark	Notes
19.			Yes with explanation	3	M1 For Line A : writes equation as $y = 1.5x + 4$ or gives the gradient as 1.5 or constant term of 4 OR for Line B : shows a method which could lead to finding the gradient or gives the gradient as 2 or constant term of 4 or calculates a sequence of points including $(0,4)$ or writes equation of line as $y = 2x + 4$ M1 Shows correct aspects relating to an aspect of Line A and an aspect of Line B that enables some comparison to be made e.g. gradients, equations or points. C1 for gradients 1.5 and 2 and Yes with explanation that the gradients are different or states the lines intersect at $(0,4)$ or explanation that interprets common constant term (4) from equations OR M1 for a diagram that shows both lines drawn and intersecting at $(0,4)$ M1 for a diagram that shows both lines and their intersection point identified as $(0,4)$ C1 for Yes and states the intersection point as $(0,4)$

		1MA1 Practice pa	pers Set 2: Paper 3H	(Regular)) mark scheme – Version 1.0
Ques	stion	Working	Answer	Mark	Notes
20.		$\frac{\sin A}{36} = \frac{\sin 48}{57}$		4	M1 or $\frac{36}{\sin A} = \frac{57}{\sin 48}$
		$A = \sin^{-1}\left(\frac{\sin 48}{57} \times 36\right) \text{ or }$			M1 dep
		A in range 27.9 – 28			
		$\frac{1}{2} \cdot 57$.			M1 dep on the first M1
		36 sin (180 – 48 – "28")			
		(= 995.49)			A1
					or $\frac{1}{2} \cdot 57 \cdot 36 \sin(48)$ with AC in range 74 – 74.5
					or AC from a correct method

1MA1 Practice papers Set 2: Paper 3H (Regular) mark scheme – Version 1.0										
Question		Working	Answer	Mark	Notes					
21.	(a)	$l^2 = 12^2 + 4^2$	159	3	M1 for $l^2 = 12^2 + 4^2$					
		$\pi \cdot 4 \cdot \sqrt{12^2 - 4^2} $ or $\pi \cdot 4 \cdot \sqrt{160}$			M1 for a correct expression of the curved surface area					
		$\pi \cdot 4 \cdot 12.6(4911)$ or			A1 (accept in range 158 – 159)					
		50.56π or								
		$\frac{1264}{25}\pi$								
	(b)	$\frac{12-h}{r} = \frac{12}{4}$ or $4(12-h) = 12r$	$V = 12\pi r^2 - 3\pi r^3$	3	M1					
		or $\frac{h}{12} = \frac{4-r}{4}$ or $4:12 = r:12-h$								
					M1 $h = 3r$					
				A1	cso					

National performance data from Results Plus

	Source of questions								Mean score of students achieving grade:					
Qu						Max	Mean							
No	Spec	Paper	Session	Qu	Topic	score	% all	ALL	A *	Α	В	С	D	Е
1	1MA0	2H	1511	Q14	Percentages	5	14	0.69	3.66	2.79	1.91	0.84	0.38	0.13
2	5AM2	2F	1211	Q22	Probability	3	28	0.83				1.66	0.78	0.36
3				NEW	Algebraic proof	1		No data available						
4	4MA0(R)	1F	1501	Q19	Fractions	3	53	1.59				2.09	1.46	0.00
5				NEW	Rearranging equations	3		No data available						
6	5AM2	2H	1411	Q12	Solve inequalities	5	66	3.30	5.00	4.50	4.25	2.71	1.79	0.00
7	5AM1	1H	1506	Q12	Compound interest	5	59	2.96	4.60	3.72	3.04	1.99	0.85	0.43
8	1MA0	2H	1311	Q08	Number sequences	4	58	2.30	3.84	3.46	2.87	2.03	1.28	0.82
9	4MA0	1H	1601	Q13	Mean, median, mode	5	39	1.94	3.47	2.03	1.21	0.74	0.41	0.24
10	5MM2	2H	1406	Q26	Solve quadratic equations	6	42	2.54	5.73	4.65	2.27	0.63	0.12	0.03
11	5AM2	2H	1211	Q20	Pythagoras in 3D	4	36	1.42	3.80	2.89	1.68	0.61	0.02	0.00
12	1380	2H	1106	Q19	Standard form	3	31	0.94	2.66	1.72	0.75	0.23	0.06	0.03
13	5AM2	2H	1506	Q19	Direct and indirect proportion	4	31	1.25	3.19	2.13	0.82	0.11	0.02	0.00
14	4MA0	1H	1601	Q17b	Circle theorems	3	37	1.12	2.22	1.21	0.57	0.17	0.04	0.03
15	1MA0	2H	1311	Q27	Histograms and grouped frequency	3	23	0.68	2.42	1.75	0.90	0.21	0.06	0.05
16	4MA0	2H	1405	Q24	Solve linear equations	3	18	0.55	1.08	0.30	0.13	0.05	0.02	0.01
17	1MA0	2H	1206	Q26	Vectors	4	18	0.73	3.16	1.62	0.57	0.12	0.02	0.01
18	2540	2H	806	Q25	Graphs of exponential functions	3	12	0.36	1.81	0.57	0.10	0.03	0.01	0.02
19	1MA0	2H	1311	Q25	Gradients	3	10	0.29	1.86	0.83	0.21	0.02	0.00	0.00
20	4MA0	1H	1601	Q20	Sine and cosine rule	4	43	1.73	3.42	2.20	0.70	0.10	0.01	0.00
21	4MA0(R)	1H	1601	Q15ab	Volume and surface area	6	64	2.90	3.81	2.43	1.75	1.17	0.14	0.60
						80								